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Abstract

We consider a class of steady-state semilinear reaction-diffusion

problems with non-differentiable kinetics. The analytical properties of

these problems have received considerable attention in the literature. We

take a first step in analyzing their numerical approximation. We present

a finite element method and establish error bounds which are optimal for

some of the problems. In addition, we also discuss a finite difference

approach. Numerical experiments for one- and two-dimensional problems are

reported.
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1. Introduction

The problem we consider is that of an irreversible steady-state

reaction taking place in a bounded domain a in Rn (n - 1,2,3) with

smooth boundary ag. The reason a steady-state occurs is that the reac-

tant used up in the reaction in fl is replenished by diffusion from the

surrounding region. In [1], it is shown that the problem may be modeled

by a scalar equation for the concentration alone:

(1.1) Au = Af(u(x)), x E 12 (u 0 in 0)

u 1 X E Do

where A is a positive constant that measures the ratio of reaction to

diffusion rates. The function f measures the ratio of the reaction rate

at concentration u to that at concentration unity. We assume that the

function f satisfies the following conditions:

(1.2) f(t) - 0 if t 0, f(1) - 1

(1.3) f(t) = tPfo(t) for 0 t < =, 0 < m fo(t) M <

1fo"(t)I K K, 0 < p <

(1.4) f'(t) + f(t) > 0 for 0 < t 1.
1 -t

For the case of a non-isothermal reaction, we may obtain the tempera-

ture v of the reactant from the relation

(1.5) v 0 8(1-u) + 1

where B > 0 if the reaction is exothermic and B < 0 if it is endo-

thermic. We will primarily be interested in the isothermal case (S = 0),
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when v remains identically unity [u and v are nondimensional

variables].

The problem (1.1) has been discussed in an analytical framework in []

and [3). An interesting feature analyzed in these papers is the exis-

tence of a "dead core," i.e., a region in 0 where u identically van-

ishes, for p <1 and A large enough. Physically, this means that the

rate of reaction is so high that the reactant is being consumed in the

dead core faster than it can be replaced through diffusion across the

boundary 3a.

The goal of this paper is to take a first step in approximating (1.1)

numerically. We will analyze numerical schemes only for the case of pth

order isothermal reactions, for the case 0 < p < 1, where f is

explicitly given by:

(1.6) f(t) - tp  for t > 0

= 0 for t 0.

It can be seen that this function satisfies (1.2) - (1.4)

For p 1, this nonlinear problem may be approximated by several

methods (for e.g. [2], [4]). However, when p < 1, f is not differen-

tiable at the origin (and if p = 0, it is not even continuous there).

Hence, the convergence theorems in the above papers fail and a different

analysis is required for the case of non-differentiable kinetics.

The plan of the paper is as follows. In Section 2, we list existence,

uniqueness and regularity results from [] and [3] that will be needed.

In Section 3, we present a finite element method for (1.1) and obtain an

error estimate for its convergence. In Section 4, we discuss a finite



difference scheme for the problem. Section 5 contains the results of

numerical experiments using our schemes.

2. Kistence, Uniqueness and Regularity Theorems

The following theorem is proved in [3].

Theorem 2.1. Let f satisfy (1.2) - (1.4). Let fl have a C2'ci

boundary fl. Then there exists a unique solution of (1.1) belonging to

C2,,(fi) where a - min(p,O).

Since the function f given by (1.6) satisfies (1.2) - (1.4), the

above theorem holds for this function. In [1], an alternate proof of

existence and uniqueness is provided, where conditions (1.3) - (1.4) are

replaced by the requirement that f is positive, continuously

differentiable and monotone increasing on (0,-). This provides results

for the function f in (1.6) for all p 0.

By the maximum principle, it follows readily that u K 1 in ft.

Moreover, the condition (1.2) ensures that u 0 in 9, which is es-

sential in terms of physical considerations.

For a convex two-dimensional domain, the dead-core, if it exists, will

be convex. The existence of the dead core depends on the parameter A,

as expressed in the following theorem, a slightly modified version of

which is proved in [1].

Theorem 2.2. Let f satisfy (1.3). Then there exists a number A0 >

0 such that (1.1) has a dead core for all A > AO.

If A is small enough or if p 1, then no dead core will exist.

For the case of a p order isothermal reaction in a slab, where fl -
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[-d,d] (d is the width of the slab) and f is given by (1.6), the dead

core appears only if

(2.1) > A where A /- (0 p < 1).( 1-p

Moreover, the size of the dead core Do - [-Y,Y] is determined by

(2.2) Y - d - - .iT

Similarly, for a pt-order isothermal reaction in a ball, there is a crit-

ical value A0  such that a dead core appears If and only if A k Ao. The

above facts are proved in [1], where several other theorems for the exis-

tence and non-existence of a dead core are provided.

Finally, it is shown in [3] that asymptotically, as A *, the boun-

dary of the dead core approaches a smooth surface parallel to aQ at dis-

tance + 0(1), 6 constant.
rX

3. A Finite Element Approximation

For convenience, we make the substitution v = 1 - u in (1.1), (1.6).

This yields the problem

(3.1) -Av - Ag(v) in 0

v - 0 on 39

where

(3.2) g(v) - (1-v)p  for v 1, p E (0,1)

- 0 for v > 1
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We know that (3.1) has a unique solution v E H2 (9), 0 v K 1 where

the region G = fx I v(x) - 11 corresponds to the dead core. The

equivalent weak formulation of (3.1) is given by:

Find v E H (10) satisfying

01

(3.3) (Vv,Vw) = A(g(v),w) for all w E H'(0)

where (-,.) denotes the usual L2 (Q) inner product.

Let now Sh be a finite dimensional subspace of H6(0) with the

property

(3 .4) inf (Iv-xl 0 + hlv-xlj1 < Chsjvls for 1K s r + 1.

XESh

Here r denotes the degree of piecewise polynomials used. Since our

solution is only known to lie in H2 (0), we restrict attention to the

case r = 1 so that Sh consists simply of piecewise linear functions.

We say that vh E Sh is an approximate solution of (3.1) if

(3.5) (Vvh,Vwh ) _ A(g(vh),wh) Vw h E Sh .

Theorem 3.1. Let g be given by (3.2). Then there exists a func-

tion vh E Sh satisfying (3.5).

The proof of Theorem 3.1 requires the following lemmas:

Lemma 3.1. Let Mn be a finite dimensional space and let T : Mn

Mn be continuous. Suppose there exists a sphere S p with radius p and

center at the origin such that (Tx,x) 0 for x on S . Then there

exists an xO such that Tx0 - 0 and 1X01 p
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Proof: See, for example, [7].

Lemma 3.2. Let g be given by (3.2). Then for any v1,v2 E R,

(3.6) 1g(v) - g(v2 )1 lv1 - v2lp.

Proof. We may assume without loss of generality that v1 > v2 . [If

v1 = v2 , (3.6) holds trivially.] If v, 1, then we see that

1g(vl) - g(v2)1 1 9g(v2)1 - v2 1P 1v1 - v21P.

If vI < 1, then

0 - V1  < 1- v2

1 -v 1

so that 0 g 1-v 2  a < 1.
1v2

Hence, 1 - ap K 1 - a 9 (-a) p , since 0 < p < 1. This gives

(1-v2)P - (1-vl)P (vl-v 2 )p

and (3.6) is proven.

Lemma 3.3. Let 0 < p < 1. Then for v > 0, v,w E L2(a),

(3.7) I(vp'w)l clVl lwlo.

Proof. Using the Schwarz inequality, we have

I(vP,w)l c(f (vp)dx) 1 Iwo.

1 1 1

Now by H6lder's inequality with q - and - + - = 1,p r q
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I/q I/r

f VAPdx < (f(v2p)qdx) (f rdx)

< C(f V2dx)1/q

from which (3.7) follows.

Proof of Theorem 3.1.

Define an operator T : Sh * Sh as follows:

(Tvh,wh) - (VvhVwh) - A(g(vh),wh) for all wh E Sh.

Clearly T is continuous. Moreover, using (3.7),

(Tvh,vh) > I o - cAlP - Vhpvh

>C(lv~ h - A[Ap+Iv h Ip]Iv hI)

where A - measure of a. Hence, for Iv h[ - p sufficiently large, we

have

(Tvh,vh) Q.

Applying Lemma 3.1 yields the theorem.

Theorem 3.2. (3.5) has a unique solution. Moreover, for Sh consist-

ing of piecewise linear functions, the solution vh 0 0 on 0.

Proof. We first prove uniqueness. let vh  and vh be two solutions

of (3.5) and let wh  vh vh . Then, from (3.5) we have:

2
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(VwhVw
h ) = A(g(v )-g(vh), v2-vh).

Since g(v) is decreasing in v, it follows that

IVwhI < o.

Since Wh . 0 on 30, this implies wh 0 0, that is vh = v .

Let now vh, the solution of (3.5) satisfy

vh(Ni) < 0

for some nodal point Ni in the grid on Q. Then there exists a nodal

point No  such that

(3.8a) vh(NO ) K vh(x) for all x E Q.

(3.8b) vh(No) < 0

(3.8c) vh(No) < vh(Nj) for at least one node Nj adjacent to No

(since vh = 0 on 39).

Now, let *0 be the linear basis function that is 1 at the point No

and 0 at all other nodal points, and let g0 be its support. Then, by

(3.8a), Vvh  is of the opposite sign as V* 0  on g0 and by (3.8c), Vvh

is not identically zero on go, Hence, substituting wh = q0 in (3.5),

we obtain

" wh,V,) = f Vh . V dx = A(g(vh),i).

The left side is strictly negative while the right side is non-negative, a

contradiction.
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Remark. The non-negativity proof above is essentially the discrete

maximum principle (using linear functions) for the non-linear problem

(3.1) with non-negative forcing function g.

We now deal with the question of' convergence of vh to v.

Theorem 3.3. Let vh be the solution of (3.5) and v the solution

of (3.3). Then

1

Iv Ch if I < p <

< Ch2 p  if 0 < p <1

where the constant C is independent of" h but depends on u, A, p

and QZ.

Proof. Let X be as in (3.4) and wh E Sh. Then, by (3.3), (3.5),

we have

(3.9) (vvh-x),Vwh) + (g(x)-g(vh),wh)

(V(V-X),Vw 
h ) + (g(x)-g(v),w h).

Taking wh = vh - X in (3.9) gives

(3.10) IV(vh-x)I 2 + g()-g(vh),vh_ X)
90

= (V(v-x),V(vh-x)) + (g(x)-g(v),vh-x).

Since g(v) is decreasing for v < 1 and zero for v > 1, it follows

that

(g(X)-g(v h ) , Vh - x ) 0.
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Hence, we may obtain from (3.10):

1i(vh-x)l1 < jV(v-x) 10 V(vh-x) I + (g (x)-g(v),v h -x).

Using (3.6), (3.7) and the Poincar6 inequality gives

IvhXll Iv-x11 + cVT Iv-xlp).

Using the approximation property (3.4) together with the triangle

inequality yields

(3.11) Iv-vhl < C(hl 2 + V' h2 Plvlp)

from which the assertion of the theorem follows.

Remark. The estimate given in Theorem 3.3 for the case p < '4 is

pessimistic. The numerical experiments in Section 5 suggest that one

gets O(h) convergence for any p.

4. A Finite Difference Approach

In this section, we present a finite difference scheme for (1.1),

(1.6) and analyze its numerical properties.

For the sake of our discussion, we take Q to be the unit square 0

x 1, 0 y 1.

Let Ph be a uniform n x n finite difference mesh with mesh spac-

ing h and boundary 30. ujj will indicate an approximate value of

the solution of (1.1), (1.6) at (xi,yj) a (ih,jh) for 0 i,j N.

ah will denote the vector with components ui,j , 1 i N - 1,

listed row by row.
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Let Ah be the usual five-point discrete Laplacian and consider the

scheme

(4.1) Ahah i on Ohl Gh - 1 on

Let m _ (N-i) 2 and let IP+ - { I 0 xi, i - 1,...,m}. Then (4.1)

may be expressed as a non-linear system of m equations in m unknowns:

(4.2) F(ah) - (Fij(ah)) - b

where Fij is defined on On+ for 2 K i,j K N-2 by

(4.3) Fij(Qh) = - ui+ 1 ,j - Ui.i j - ui,j+l - Uj,j_ ] + 4ui,j + Ah2u ,J.

For other values of i,j, Fij is defined once again by (4.3) except that

the contributions from ui,j on agh are taken on the right hand side to

comprise the vector b. Notice that all entries in b will be non-

negative. In what follows, we will assume for simplicity that the compo-

nents of F and Ch are given by {Fi } and fui } respectively, i -

1,2,...,m. We will be using the terminology from [5] and [6] to define

terms like inverse isotone, off-diagonally antitone and M-function.

The continuous mapping F : Rm+ - Rm  turns out to be an M-function,

yielding the following result.

Theorem 4.1. The difference scheme (4.1) has a unique solution 0

Qh K 1. Moreover, let , E RP' be vectors with all components 0

and 1, respectively. For any w E (0,1] define the (SOR) iterates

Ok by
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k+1 k+1 k k
F(U.I  , ....ui_19,ui,ul ,...,u) - bI for ui ,

uk ui + W(ui-u); i = 1,2,...,m, k = 0,1,...

Then the iterates [0kj starting from 00 and 00 are uniquely defined,

non-negative and converge monotonically to ah from below and above,

respectively.

Proof. We first show that F is an M-function. By Def. 2.8 of [6],

we must show that F is inverse isotone and off-diagonally antitone.

Define * :m +  F IP by

(4.5) *i(ah) - Xh2ui, 1 i m.

Then it is immediately seen that * R" +  in is a continuous, isotone,

diagonal mapping. Moreover, (4.3), (4.5) may be used to obtain the

following splitting for F:

(4.6) F(Oh) - Aah + (Oh).

The m x m matrix A is irreducibly diagonally dominant with aj,j

0 for I A j and aii > 0 for i = 1,...,n. From this, it follows

that F if off-diagonally antitone. In addition, by 2.4.14, p. 55 of

[5], A is an M-matrix. The fact that F is inverse isotone now follows

easily by the proof of 13.5.6, p. 467 of [5].

By Theorem 2.10 of [6] , F is strictly diagonally isotone. We now

note that taking Mot YO E fIP+ consisting of all O's and all 1's,

respectively, yields

R0 Y0
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F(20 ) b F(Yo)

and

J - x E Rn' x0 K x K yO) c 0" .

By Theorem 3.1 of [6], we find that for any w E (0,1], the Gauss-Seide.

iterates {(kY and 12k} given by (4.4) and starting from Yo and

to, respectively, are uniquely defined and satisfy Rk + Y 7k + Y*'

F(2 ) = F(Y) - b, where the monotonicity of the convergence insures 0 K

xi,Yi 1 1, i - 1,2,...,m. Finally, the fact that 2= = h  follows

from the inverse isotonicity of F, so that Uh is unique and 0 K h  1.

Remark: It is obvious that Theorem 4.1 will be true for any sub and

super solutions O and ao, respectively, for (4.2).

(4.4) therefore provides us with an Iterative scheme to solve (4.1)

which has been used successfully by us in computations. It is of interest

to note that the solution Gh of (4.1) does not have a discrete dead core

in the sense that ui,j 0 0 at any point of the mesh. For, if uij = 0

at a mesh point, then by (4.3) we obtain

"Ui-lj + ui+lJ + ui,j-1 + ul,j+l = 0

so that by non-negativity of the solution,

Ui-lJ uj+i,j = ui,j-1 = Ui,j+1  = 0.

This in turn implies that ah - 0 at all interior mesh points, a conse-

quence that obviously contradicts (4.1) adjacent to 3h'

Numerical experiments show that the above difference scheme yields

~ 22 , -
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O(h) convergence in the discrete H1 norm of the error. As for many

difference schemes, a higher convergence rate is obtained if it is

measured at the nodes alone. The following difference scheme for the one-

dimensional problem is interesting in this respect.

UP  + u +UP
(4 5) ui+ l -

2ui + u i 1 + 1 + 1 l .
12

For the case when A = 12 and p - 1, (4.5) reproduces the true

solution u - x 4 exactly at the mesh points, so that the error is zero at

these points.

5. Numerical Experiments

In this section we look at results obtained using the finite element

method. In the one-dimensional case, the width of the dead core for

(1.1), (1.6) can be analytically determined by (2.1), (2.2). Moreover,

when 11 - [-l,+1], p - 0.5 and A - 12, the exact solution is given by

u - x , which has a one-point dead core at the origin. In this case, the

error in the computations below can be measured exactly. In other cases,

the true solution is replaced by an approximation using a sufficiently

small mesh size [number of sub-intervals, N = 64]. The mesh size h is

given by 2/N.



17

p A N Hi error

0.5 12 4 1.0438
8 0.5450

12 0.3610
16 0.2735

0.5 20 4 1.4404
8 0.7923

12 0.5387
16 0.3957

0.1 20 4 1.9429
8 1.0071

12 0.6827
16 0.5035

The above experiments show the errors obtained with linear elements.

It is observed that the rate of convergence in the Hl norm is O(h) in

all cases. This corresponds with the estimates for p 0.5 in Theorem

3.3 but exceeds the rate of O(h2p ) predicted for p < 0.5.

The two-dimensional results show exactly the same orders of conver-

gence. In this case, experiments are first performed over a square using

linear piecewise polynomials on a uniform triangular mesh. The next set

of experiments involve bilinear functions on a uniform rectangular mesh.

Both these finite element spaces satisfy (3.4). N now represents the

number of sub-divisions on each side of the square and the mesh size h

is once again 2/N. Some sample results are presented below.
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Linear Functions

p A N HI error

0.5 4 4 0.5485
8 0.2845

12 0.1910
16 0.1407

24 4 2.1017
8 1.1250
12 0.9330
16 0.5676

48 4 3.0907
8 1.8063

12 1.1848
16 0.9130

0.1 4 4 0.6155
8 0.3177

12 0.2140
16 0.1569

10 4 1.5497
8 0.8694
12 0.6600
16 0.5393

20 4 2.3220
8 1.2086

12 0.8128
16 0.6024
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Bilinear Functions

p A N HI error

0.5 4 4 0.4022
8 0.2030

12 0.1352
16 0.0995

24 4 1.7751
8 0.9312

12 0.6149
16 0.4596

48 4 2.8526
8 1.6228

12 1.0570
16 0.8051

0.1 4 4 0.4382
8 0.2200
12 0.1468
16 0.1077

10 4 1.1021
8 0.5718

12 0.4046
16 0.3145

20 4 1.9706
8 0.9848

12 0.6559
16 0.4815

Remarks:

(a) Dependence on A. It is observed that for large A, the

increase in the error for the same p and N is proportional to ,17, as

predicted by (3.11).

(b) L2 errors. For some of our calculations, the L2  errors con-

verged at the rate of O(h2 ). In other cases, the convergence rate was

lower. We have not yet determined conclusively either by means of" compu-

tation or analysis what the correct rate should be.
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(c) The case p = 0. Although Theorem 3.3 does not predict conver-

gence in this case, computationally, we once again observed O(h) conver-

gence in experiments similar to the above.

(d) Finite Difference Calculations. Computations based on the dif-

ference scheme (4.1) are not reproduced here. They showed similar magni-

tudes of error and identical rates of convergence as the finite element

case, both in the one- and two-dimensional case.

(e) Boundedness of Approximate Solutions. In all our calculations,

we observed that the approximate solution always satisfied 0 uh 1.

For the finite difference case, this is justified by Theorem 4.1. For the

finite element case, the discrete maximum principle justifies uh 1, as

shown in Theorem 3.2. We have not, however, been able to prove that

uh > 0.

(f) Existence of the Dead Core. In the one-dimensional case, it was

observed computationally that Theorem 2.2 was satisfied with A0 = 12

when p = 0.5. Similar critical values of A were observed for the two-

dimensional case. In the two-dimensional examples presented, for A = 4

there was no dead core, while for other values of A, a dead core was

observed.

12"N
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